A Method for Evaluating the Quality of 3D-Printing Metal Parts
The World Platinum Investment Association (WPIC) said recently that carmakers are accelerating reductions in palladium use and increased use of platinum due to concerns about Russian palladium supplies. However, it still expects a significant surplus in the platinum market this year.
Palladium is used by carmakers in tailpipe emissions systems to reduce carbon emissions. While carmakers prefer palladium for catalytic converters, they are turning to platinum, which is cheaper than palladium, to save costs.
Russia accounts for about 25-30% of the world's palladium supply and 8-10% of its platinum supply.
There is no sign that western sanctions against Russia have restricted palladium exports since the conflict escalated in February, but as the conflict continues, more companies could boycott The Russian metal and governments could impose restrictions.
Platinum is currently trading at about $950 an ounce, about half the price of palladium. Automakers use about 2.5 million to 3 million ounces of platinum and about 8.5 million ounces of palladium each year.
For the year as a whole, platinum supply will be 5 percent lower than in 2021 and demand 2 percent higher, with the automotive sector seeing a 16 percent increase due to increased light vehicle 3D printing metal powder are still very uncertain.
Researchers at NTU Singapore have developed a fast and low-cost imaging method for assessing the quality of 3D-printed metal parts. This method can analyze the structure and material quality of 3D-printed metal parts.
Most 3D-printed metal alloys consist of numerous microscopic crystals that vary in shape, size, and orientation of the atomic lattice. By mapping this information, scientists and engineers can infer the alloy's properties, such as strength and toughness. It's like looking at wood grain. When wood grain is continuous in the same direction, strength and toughness are strongest.
The new technology could benefit the aerospace sector - enabling low-cost rapid assessment of turbines, fan blades, and other critical components, which is of great significance to the maintenance and overhaul industry.
Until now, however, analyzing the "microstructure" in 3D-printed metal alloys has been a time-consuming and laborious process, usually achieved using measurements made with scanning electron microscopes, which cost between S $100,000 and S $2 million.
But the new alloy imaging method developed by Assistant Professor Matteo Seita and his team at NTU provides quality analysis in just a few minutes. They used a system of optical cameras, flashlights, and laptops that ran proprietary machine learning software developed by the team at a total cost of about $25,000.
The method involves treating the metal surface with chemicals to reveal its microstructure, then holding the sample facing the camera and using a flashlight to illuminate the metal in different directions to take multiple optical images. The software then analyzes the patterns produced by the light reflected off the surfaces of different metal crystals and deduces their orientation. The whole process takes about 15 minutes. The team's findings have been published in NPJ Computational Materials.
"By using our low-cost and fast imaging method, we can easily tell the difference between good 3D-printed metal parts and defective parts. Currently, it is impossible to tell the difference unless we evaluate the microstructure of the materials in detail, "explained Seita, an assistant professor at NTU's School of Mechanical and Aerospace Engineering and School of Materials Science and Engineering.
"Even though two 3D-printed metal parts may be produced using the same technology and have the same geometry, they are never the same. In theory, this is similar to how two originally identical wooden objects could have different texture structures."
New imaging methods improve 3D printing certification and quality assessment. Assistant Professor Seita believes their innovative imaging method could simplify the certification and quality assessment of metal alloy parts produced by 3D printing, also known as additive manufacturing.
One of the most common techniques for 3D printing metal parts is to use high-powered lasers to melt metal powders and fuse them layer by layer until a complete product is printed.
However, the microstructure, and thus the quality of the printed metal, depends on many factors, including the speed or strength of the laser, how long the metal cools before the next layer is melted, and even the type and brand of metal powder used. This is why the same design printed by two different machines or production plants may result in parts of different quality.
Instead of using a complex computer program to measure crystal orientation in the light signals collected, the "smart software" developed by Assistant Professor Seita and his team uses a neural network to simulate how the human brain forms associations and processes thoughts. The team then used machine learning to program the software to feed it hundreds of optical images.
Their software eventually learned how to predict the orientation of crystals in metal from an image, depending on how light scatters from the metal's surface. A complete "crystal orientation diagram" is then created, which provides comprehensive information about crystal shape, size, and atomic lattice orientation.
3D printing metal powder Price
The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.
If you are looking for the latest 3D printing metal powder price, you can send us your inquiry for a quote. ([email protected])
3D printing metal powder Supplier
Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials including silicon powder, nitride powder, graphite powder, zinc sulfide, calcium nitride, 3D printing powder, etc.
If you are looking for high-quality 3D printing metal powder, please feel free to contact us and send an inquiry. ([email protected])
Recently, the first press conference of the Boao Forum For Asia Annual Conference 2022 was held. Two flagship reports were released at the conference: "Asia's Economic Prospects and Integration Process 2022" and "Sustainable Asia and the World 2022-Green Transformation in Action in Asia".
The flagship report points out that the global economy will recover in 2021, and the pace of economic integration in the Asia-Pacific has not stopped even in the face of the impact of COVID-19. The Asia-Pacific region has provided new impetus for the world's economic recovery and institutional building.
The report gives an outlook on the Asian economy, noting that a number of factors will affect Asian economic growth. For example, mutated strains such as Delta and Omicron have become more transmissible, and many economies are experiencing epidemic peaks again. The Ukraine crisis has triggered geopolitical changes in Asia and Europe, leading to higher commodity prices, which may affect the global energy supply and energy transformation.
The report pointed out that the Asian economy will still be in the process of recovery in 2022, but the growth rate may moderate. According to the report, Asia's economic growth in 2022 is likely to be lower than the current IMF forecast, which is projected at 4.8%.
Affected by several factors, the supply of the 3D printing metal powder is erratic and thus its prices are expected to go higher in the future.
Inquiry us